ec 2 00 6 BOOLEAN CONVOLUTION OF PROBABILITY MEASURES ON THE UNIT CIRCLE by Uwe Franz
نویسنده
چکیده
—We introduce the boolean convolution for probability measures on the unit circle. Roughly speaking, it describes the distribution of the product of two boolean independent unitary random variables. We find an analogue of the characteristic function and determine all infinitely divisible probability measures on the unit circle for the boolean convolution. Résumé (Convolution booléenne de probabilités sur le cercle) La convolution booléenne de deux probabilités sur le cercle est définie comme la distribution du produit de deux opérateurs unitaires U et V tels que U − 1 et V − 1. Un analogue de la fonction caractéristique est donnée et les lois infiniment divisibles pour cette convolution sont caractérisées.
منابع مشابه
Boolean Convolution of Probability Measures on the Unit Circle
We introduce the boolean convolution for probability measures on the unit circle. Roughly speaking, it describes the distribution of the product of two boolean independent unitary random variables. We find an analogue of the characteristic function and determine all infinitely divisible probability measures on the unit circle for the boolean convolution.
متن کاملMultiplicative Monotone Convolutions
Recently, Bercovici has introduced multiplicative convolutions based on Muraki’s monotone independence and shown that these convolution of probability measures correspond to the composition of some function of their Cauchy transforms. We provide a new proof of this fact based on the combinatorics of moments. We also give a new characterisation of the probability measures that can be embedded in...
متن کاملMonotone and Boolean Convolutions for Non-compactly Supported Probability Measures
Abstract. The equivalence of the characteristic function approach and the probabilistic approach to monotone and boolean convolutions is proven for non-compactly supported probability measures. A probabilistically motivated definition of the multiplicative boolean convolution of probability measures on the positive half-line is proposed. Unlike Bercovici’s multiplicative boolean convolution it ...
متن کاملA ug 2 00 6 DECOMPOSITIONS OF THE FREE ADDITIVE CONVOLUTION
We introduce and study a new type of convolution of probability measures called the orthogonal convolution, which is related to the monotone convolution. Using this convolution, we derive alternating decompositions of the free additive convolution μ` ν of compactly supported probability measures in free probability. These decompositions are directly related to alternating decompositions of the ...
متن کاملLimit Theorems in Free Probability Theory. Ii
Based on an analytical approach to the definition of multiplicative free convolution on probability measures on the nonnegative line R+ and on the unit circle T we prove analogs of limit theorems for nonidentically distributed random variables in classical Probability Theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004